Exponential sums, hypersurfaces with many symmetries and Galois representations

Gabriel Chênevert

McGill University Ph.D. thesis oral defense

August 22, 2008

向下 イヨト イヨト

Given $q = p^r$ a prime power, consider the additive character

$$\psi_q: (\mathbb{F}_q, +) \longrightarrow (\mathbb{C}, \times), \qquad \psi_q(x):= \exp\left(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)\right).$$

向下 イヨト イヨト

Given $q = p^r$ a prime power, consider the additive character

$$\psi_q: (\mathbb{F}_q, +) \longrightarrow (\mathbb{C}, \times), \qquad \psi_q(x):= \exp\left(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)\right).$$

For $\alpha, \beta \in \mathbb{F}_q$ with $\alpha \neq 0$ and ℓ a prime number, define

$$B_{\ell}(q; \alpha, \beta) := \sum_{x \in \mathbb{F}_q} \psi_q(\alpha x^{\ell+1} + \beta x) \in \mathbb{C}.$$

ヨット イヨット イヨッ

Given $q = p^r$ a prime power, consider the additive character

$$\psi_q: (\mathbb{F}_q, +) \longrightarrow (\mathbb{C}, \times), \qquad \psi_q(x):= \exp\left(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)\right).$$

For $\alpha, \beta \in \mathbb{F}_q$ with $\alpha \neq 0$ and ℓ a prime number, define

$$B_{\ell}(q; \alpha, \beta) := \sum_{x \in \mathbb{F}_q} \psi_q(\alpha x^{\ell+1} + \beta x) \in \mathbb{C}.$$

Weil estimate: $|B_{\ell}(q; \alpha, \beta)| \le \ell \sqrt{q}$ provided $p > \ell + 1$.

伺い イヨト イヨト 三日

Given $q = p^r$ a prime power, consider the additive character

$$\psi_q: (\mathbb{F}_q, +) \longrightarrow (\mathbb{C}, \times), \qquad \psi_q(x) := \exp\left(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)\right).$$

For $\alpha, \beta \in \mathbb{F}_q$ with $\alpha \neq 0$ and ℓ a prime number, define

$$B_{\ell}(q; \alpha, \beta) := \sum_{x \in \mathbb{F}_q} \psi_q(\alpha x^{\ell+1} + \beta x) \in \mathbb{C}.$$

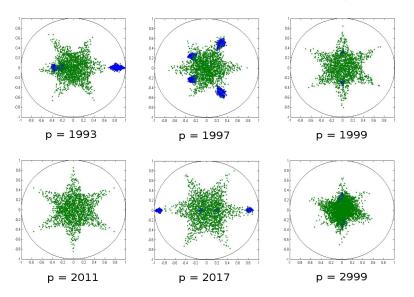
Weil estimate: $|B_{\ell}(q; \alpha, \beta)| \leq \ell \sqrt{q}$ provided $p > \ell + 1$.

We want to understand how the normalized exponential sums

$$b_{\ell}(\boldsymbol{q}; lpha, eta) := rac{B_{\ell}(\boldsymbol{q}; lpha, eta)}{\ell \sqrt{q}} \in \mathbb{D}$$

are distributed, on average, as $q
ightarrow \infty.$

Example: Some of the multisets $\{b_3(p; \alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_p, \alpha \neq 0\}$.



(日) (同) (E) (E) (E)

æ

Let $\mu_\ell(q)$ denote the counting probability measure on $\mathbb D$ associated to the multiset

$$\{b_{\ell}(q; \alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_q, \alpha \neq 0\}.$$

白 ト イヨト イヨト

Let $\mu_{\ell}(q)$ denote the counting probability measure on $\mathbb D$ associated to the multiset

$$\{b_{\ell}(q; \alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_q, \alpha \neq 0\}.$$

We want to understand the behaviour as $q \to \infty$ of $\mu_{\ell}(q)$.

伺 と く き と く き と

Let $\mu_{\ell}(q)$ denote the counting probability measure on $\mathbb D$ associated to the multiset

$$\{b_{\ell}(q; \alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_q, \alpha \neq 0\}.$$

We want to understand the behaviour as $q \to \infty$ of $\mu_{\ell}(q)$.

Convention: $p \to \infty$ as $q \to \infty$.

伺い イヨト イヨト ニヨ

Let $\mu_{\ell}(q)$ denote the counting probability measure on \mathbb{D} associated to the multiset

$$\{b_{\ell}(q; \alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_q, \alpha \neq 0\}.$$

We want to understand the behaviour as $q \to \infty$ of $\mu_{\ell}(q)$.

Convention: $p \to \infty$ as $q \to \infty$.

Theorem (Livné) $\lim_{q \to \infty} \mu_2(q) = \mu_{ST},$

where $\mu_{\rm ST} = \frac{2}{\pi} \sqrt{1 - x^2} dx$ is the Sato-Tate measure on [-1, 1].

æ

Study the distributions $\mu_{\ell}(q)$ through their moments, which can be related to the number of \mathbb{F}_q -rational points on certain algebraic varieties.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Study the distributions $\mu_{\ell}(q)$ through their moments, which can be related to the number of \mathbb{F}_q -rational points on certain algebraic varieties.

In Livné's case ($\ell = 2$):

$$W_m: \sum_{i=1}^m x_i = \sum_{i=1}^m x_i^3 = 0$$
 in \mathbb{P}^{m-1}

伺下 イヨト イヨト

Study the distributions $\mu_{\ell}(q)$ through their moments, which can be related to the number of \mathbb{F}_q -rational points on certain algebraic varieties.

In Livné's case ($\ell = 2$):

$$W_m: \sum_{i=1}^m x_i = \sum_{i=1}^m x_i^3 = 0$$
 in \mathbb{P}^{m-1} .

For general ℓ :

$$W_{\ell}^{m,n}: \sum_{i=1}^{m} x_i - \sum_{j=1}^{n} y_j = \sum_{i=1}^{m} x_i^{\ell+1} - \sum_{j=1}^{n} y_j^{\ell+1} = 0$$
 in \mathbb{P}^{m+n-1} .

向下 イヨト イヨト

Study the distributions $\mu_{\ell}(q)$ through their moments, which can be related to the number of \mathbb{F}_q -rational points on certain algebraic varieties.

In Livné's case ($\ell = 2$):

$$W_m: \sum_{i=1}^m x_i = \sum_{i=1}^m x_i^3 = 0$$
 in \mathbb{P}^{m-1} .

For general ℓ :

$$W_{\ell}^{m,n}: \sum_{i=1}^{m} x_i - \sum_{j=1}^{n} y_j = \sum_{i=1}^{m} x_i^{\ell+1} - \sum_{j=1}^{n} y_j^{\ell+1} = 0$$
 in \mathbb{P}^{m+n-1} .

向下 イヨト イヨト

Study the distributions $\mu_{\ell}(q)$ through their moments, which can be related to the number of \mathbb{F}_q -rational points on certain algebraic varieties.

In Livné's case ($\ell = 2$):

$$W_m: \sum_{i=1}^m x_i = \sum_{i=1}^m x_i^3 = 0$$
 in \mathbb{P}^{m-1} .

For general ℓ :

$$W_{\ell}^{m,n}: \sum_{i=1}^{m} x_i - \sum_{j=1}^{n} y_j = \sum_{i=1}^{m} x_i^{\ell+1} - \sum_{j=1}^{n} y_j^{\ell+1} = 0$$
 in \mathbb{P}^{m+n-1} .

向下 イヨト イヨト

$$M_\ell^{m,n}(q) = \int_{\mathbb{D}} z^m ar{z}^n d\mu_\ell(q)$$

- (日) (三) (三) (三) (三)

$$egin{aligned} &M_\ell^{m,n}(q) = \int_{\mathbb{D}} z^m ar{z}^n d\mu_\ell(q) \ &= rac{1}{q(q-1)} \sum_{lpha
eq 0,eta} b_\ell(q;lpha,eta)^m \overline{b_\ell(q;lpha,eta)}^n. \end{aligned}$$

- (日) (三) (三) (三) (三)

$$egin{aligned} &M_\ell^{m,n}(q) = \int_{\mathbb{D}} z^m ar{z}^n d\mu_\ell(q) \ &= rac{1}{q(q-1)} \sum_{lpha
eq 0,eta} b_\ell(q;lpha,eta)^m \overline{b_\ell(q;lpha,eta)}^n. \end{aligned}$$

Lemma

$$M_{\ell}^{m,n}(q) = rac{1}{\ell^N q^{N/2}} \left(|W_{\ell}^{m,n}(\mathbb{F}_q)| - rac{q^{N-2}-1}{q-1}
ight), \quad N = m+n.$$

(本部)) (本語)) (本語)) (語)

$$egin{aligned} &M_\ell^{m,n}(q) = \int_{\mathbb{D}} z^m ar{z}^n d\mu_\ell(q) \ &= rac{1}{q(q-1)} \sum_{lpha
eq 0,eta} b_\ell(q;lpha,eta)^m \overline{b_\ell(q;lpha,eta)}^n. \end{aligned}$$

Lemma

$$M_{\ell}^{m,n}(q) = rac{1}{\ell^N q^{N/2}} \left(|W_{\ell}^{m,n}(\mathbb{F}_q)| - rac{q^{N-2}-1}{q-1}
ight), \quad N = m+n.$$

Lefschetz trace formula: $|W_{\ell}^{m,n}(\mathbb{F}_q)|$ can be studied via the action of Frobenius on the étale cohomology groups $H^{\bullet}(W_{\ell}^{m,n})$.

向下 イヨト イヨト ニヨ

The symmetric hypersurfaces $W_\ell^{m,n}$

Gabriel Chênevert Exp. sums, hypersurfaces with symmetries & Galois repr.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $W^{m,n}_\ell$: smooth projective hypersurface over $\mathbb Q$

個 と く ヨ と く ヨ と …

The symmetric hypersurfaces $W_{\ell}^{m,n}$

$W^{m,n}_\ell$: smooth projective hypersurface over $\mathbb Q$

▶ degree $\ell + 1$

個 と く ヨ と く ヨ と …

The symmetric hypersurfaces $W_{\ell}^{m,m}$

$W^{m,n}_\ell$: smooth projective hypersurface over $\mathbb Q$

- degree $\ell + 1$
- ▶ dimension N 3

・ 同 ト ・ ヨ ト ・ ヨ ト …

The symmetric hypersurfaces $W_{\ell}^{m,m}$

$W^{m,n}_{\ell}$: smooth projective hypersurface over $\mathbb Q$

- degree $\ell + 1$
- ▶ dimension N 3
- admits a projective action of $S_m \times S_n$.

向下 イヨト イヨト

 $W^{m,n}_{\ell}$: smooth projective hypersurface over $\mathbb Q$

- degree $\ell + 1$
- ▶ dimension *N* − 3
- admits a projective action of $S_m \times S_n$.

Let p > N be a prime which is inert in $\mathbb{Q}(\zeta_{\ell})$, i.e. $\mathbb{F}_{\ell}^{\times} = \langle p \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $W^{m,n}_\ell$: smooth projective hypersurface over $\mathbb Q$
 - degree $\ell + 1$
 - ▶ dimension N 3
 - admits a projective action of $S_m \times S_n$.

Let p > N be a prime which is inert in $\mathbb{Q}(\zeta_{\ell})$, i.e. $\mathbb{F}_{\ell}^{\times} = \langle p \rangle$.

• $W_{\ell}^{m,n}$ has good reduction at p whenever $m \not\equiv n \mod \ell$.

▲□→ ▲目→ ▲目→ 三日

- $W^{m,n}_{\ell}$: smooth projective hypersurface over $\mathbb Q$
 - degree $\ell + 1$
 - ▶ dimension N 3
 - admits a projective action of $S_m \times S_n$.

Let p > N be a prime which is inert in $\mathbb{Q}(\zeta_{\ell})$, i.e. $\mathbb{F}_{\ell}^{\times} = \langle p \rangle$.

- $W_{\ell}^{m,n}$ has good reduction at p whenever $m \not\equiv n \mod \ell$.
- When m ≡ n mod ℓ, the reduction of W^{m,n}_ℓ at p acquires ordinary double points (tangent cone is a smooth quadric).

- $W^{m,n}_{\ell}$: smooth projective hypersurface over $\mathbb Q$
 - degree $\ell + 1$
 - ▶ dimension N 3
 - admits a projective action of $S_m \times S_n$.

Let p > N be a prime which is inert in $\mathbb{Q}(\zeta_{\ell})$, i.e. $\mathbb{F}_{\ell}^{\times} = \langle p \rangle$.

- $W_{\ell}^{m,n}$ has good reduction at p whenever $m \not\equiv n \mod \ell$.
- When m ≡ n mod ℓ, the reduction of W^{m,n}_ℓ at p acquires ordinary double points (tangent cone is a smooth quadric).

In that case, the blow-up $\widetilde{W}_{\ell}^{m,n}$ along the singularities is smooth.

- 4 回 2 - 4 □ 2 - 4 □

æ

• primitive cohomology in middle degree (N-3);

< □ > < □ > < □ > □ □

- primitive cohomology in middle degree (N-3);
- "subprimitive cohomology" in next-to-middle degrees coming from the primitive cohomology of the exceptional fibers (smooth quadrics).

(周) (ヨ) (ヨ) (ヨ)

- primitive cohomology in middle degree (N 3);
- "subprimitive cohomology" in next-to-middle degrees coming from the primitive cohomology of the exceptional fibers (smooth quadrics).

Theorem If $q = p^r$ with p inert in $\mathbb{Q}(\zeta_{\ell})$,

$$M_{\ell}^{m,n}(q) = \pm rac{1}{\ell^N} \dim H^{N-4}_{sub}(\widetilde{W}_{\ell}^{m,n}) + O\left(rac{1}{\sqrt{q}}
ight)$$

周下 イヨト イヨト 二日

- primitive cohomology in middle degree (N 3);
- "subprimitive cohomology" in next-to-middle degrees coming from the primitive cohomology of the exceptional fibers (smooth quadrics).

Theorem If $q = p^r$ with p inert in $\mathbb{Q}(\zeta_\ell)$, $M_\ell^{m,n}(q) = \pm \frac{1}{\ell^N} \dim H^{N-4}_{sub}(\widetilde{W}_\ell^{m,n}) + O\left(\frac{1}{\sqrt{q}}\right)$.

Remark: The subprimitive cohomology vanishes unless

$$n \equiv m \mod \ell$$
 and $n \equiv m \mod 2$.

マロト イヨト イヨト ニヨ

・ロン ・回 と ・ ヨン ・ ヨン

Э

In the smooth case, the character $\chi_{\rm pr}$ of the action of $S_m \times S_n$ on $H^{N-3}_{\rm pr}(W^{m,n}_\ell)$ can be computed using the Lefschetz fixed point formula.

< □→ < 注→ < 注→ □ 注

In the smooth case, the character $\chi_{\rm pr}$ of the action of $S_m \times S_n$ on $H^{N-3}_{\rm pr}(W^{m,n}_\ell)$ can be computed using the Lefschetz fixed point formula.

For $\sigma \in S_N$, $d \ge 1$, let $m_d(\sigma)$ denote the number of cycles in the cycle decomposition of σ whose length is divisible by d.

マボン イラン イラン・ラ

In the smooth case, the character $\chi_{\rm pr}$ of the action of $S_m \times S_n$ on $H^{N-3}_{\rm pr}(W^{m,n}_\ell)$ can be computed using the Lefschetz fixed point formula.

For $\sigma \in S_N$, $d \ge 1$, let $m_d(\sigma)$ denote the number of cycles in the cycle decomposition of σ whose length is divisible by d.

Theorem

Suppose $m \not\equiv n \mod \ell$. For $\sigma \in S_m \times S_n \hookrightarrow S_N$, we have

$$\chi_{\rm pr}(\sigma) = (-1)^{N+1} \frac{(1-\ell)^{m_1(\sigma)-1} - (1-\ell)^{m_\ell(\sigma)+1}}{\ell}$$

(4月) (4日) (4日) 日

In the smooth case, the character $\chi_{\rm pr}$ of the action of $S_m \times S_n$ on $H^{N-3}_{\rm pr}(W^{m,n}_\ell)$ can be computed using the Lefschetz fixed point formula.

For $\sigma \in S_N$, $d \ge 1$, let $m_d(\sigma)$ denote the number of cycles in the cycle decomposition of σ whose length is divisible by d.

Theorem

Suppose $m \not\equiv n \mod \ell$. For $\sigma \in S_m \times S_n \hookrightarrow S_N$, we have

$$\chi_{\rm pr}(\sigma) = (-1)^{N+1} \frac{(1-\ell)^{m_1(\sigma)-1} - (1-\ell)^{m_\ell(\sigma)+1}}{\ell}$$

Example: $H^4_{pr}(W_7) \cong 2 \cdot \text{sg} \oplus \theta_6 \oplus \theta_{14}$, where θ_6 and θ_{14} are irreducible representations of S_7 of degree 6 and 14, respectively.

(四) (日) (日)

白 ト イヨト イヨト

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on

$$H^4_{
m pr}(W^7_2)_{
m sg}(-1).$$

通 とう ほうとう ほうど

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on

$$H^4_{
m pr}(W^7_2)_{
m sg}(-1).$$

(Actually: compatible system of ℓ -adic Galois representations.)

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

unramified outside {3,5,7};

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

- unramified outside {3, 5, 7};
- det $\rho = \varepsilon_{35} \otimes \chi_{cycl}$

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

unramified outside {3, 5, 7};

• det $\rho = \varepsilon_{35} \otimes \chi_{cycl}$, ε_{35} : quadratic character of conductor 35.

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

- unramified outside {3, 5, 7};
- det $\rho = \varepsilon_{35} \otimes \chi_{cycl}$, ε_{35} : quadratic character of conductor 35.

Numerical evidence: We seem to have

$$\operatorname{tr}(Frob_p) = a_p(f), \quad \text{for } p \neq 3, 5, 7,$$

 $f(q) = 1 + q^3 - 5q^5 + 7q^7 + q^9 - 13q^{11} + \cdots \in S_3(35, \varepsilon_{35}).$

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

- unramified outside {3, 5, 7};
- det $\rho = \varepsilon_{35} \otimes \chi_{cycl}$, ε_{35} : quadratic character of conductor 35.

Numerical evidence: We seem to have

$$\operatorname{tr}(Frob_p) = a_p(f), \quad ext{for } p \neq 3, 5, 7,$$

 $f(q) = 1 + q^3 - 5q^5 + 7q^7 + q^9 - 13q^{11} + \cdots \in S_3(35, \varepsilon_{35}).$

Deligne's construction: $\rho \sim \rho_f$

Let ρ be the 2-dimensional representation of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^4_{\mathrm{pr}}(W^7_2)_{\mathrm{sg}}(-1).$

(Actually: compatible system of *l*-adic Galois representations.)

- unramified outside {3, 5, 7};
- det $\rho = \varepsilon_{35} \otimes \chi_{cycl}$, ε_{35} : quadratic character of conductor 35.

Numerical evidence: We seem to have

$$\operatorname{tr}(Frob_p) = a_p(f), \quad \text{for } p \neq 3, 5, 7,$$

 $f(q) = 1 + q^3 - 5q^5 + 7q^7 + q^9 - 13q^{11} + \cdots \in S_3(35, \varepsilon_{35}).$

Deligne's construction: $\rho \stackrel{?}{\sim} \rho_f$ (up to semi-simplification.)

Let K be a number field, S a finite set of primes of K, and

$$\rho_1, \rho_2: \mathcal{G}_K \longrightarrow \mathrm{GL}_2(\mathbb{Z}_\ell)$$

two continuous representations unramified outside S such that

 $\rho_1 \equiv \rho_2 \mod \ell.$

Let K be a number field, S a finite set of primes of K, and

$$\rho_1, \rho_2: \mathcal{G}_K \longrightarrow \mathrm{GL}_2(\mathbb{Z}_\ell)$$

two continuous representations unramified outside S such that

 $\rho_1 \equiv \rho_2 \mod \ell.$

Definition A subset $\Sigma \subseteq G_K$ is *sufficient* if

$$\begin{array}{c} \operatorname{tr} \rho_1(\sigma) = \operatorname{tr} \rho_2(\sigma) \\ \operatorname{det} \rho_1(\sigma) = \operatorname{det} \rho_2(\sigma) \end{array} \right\} \text{ for all } \sigma \in \Sigma \implies \rho_1 \sim \rho_2$$

Let K be a number field, S a finite set of primes of K, and

$$\rho_1, \rho_2: \mathcal{G}_K \longrightarrow \mathrm{GL}_2(\mathbb{Z}_\ell)$$

two continuous representations unramified outside S such that

 $\rho_1 \equiv \rho_2 \mod \ell.$

Definition A subset $\Sigma \subseteq G_K$ is *sufficient* if

$$\begin{array}{l} \operatorname{tr} \rho_1(\sigma) = \operatorname{tr} \rho_2(\sigma) \\ \operatorname{det} \rho_1(\sigma) = \operatorname{det} \rho_2(\sigma) \end{array} \right\} \ \, \text{for all} \ \, \sigma \in \Sigma \ \, \Longrightarrow \ \, \rho_1 \sim \rho_2.$$

Faltings-Serre method: There exists a *finite* sufficient set Σ depending only on S, ℓ and $\overline{\rho}_i$.

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$.

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

伺下 イヨト イヨト

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

 if |H| ≤ 2: onto the greatest quotient of exponent 2 of G (Faltings-Serre-Livné)

伺下 イヨト イヨト

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

- if |H| ≤ 2: onto the greatest quotient of exponent 2 of G (Faltings-Serre-Livné)
- if |H| = 3: an element of order 6 in every intermediate quotient Z/2Z × H ≅ Z/6Z;

伺下 イヨト イヨト

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

- if |H| ≤ 2: onto the greatest quotient of exponent 2 of G (Faltings-Serre-Livné)
- if |H| = 3: an element of order 6 in every intermediate quotient Z/2Z × H ≅ Z/6Z;
- if H ≅ S₃: an element of order ≥ 3 in every intermediate quotient Q of the form H × Z/2Z or

$$1 \longrightarrow V_4 \longrightarrow Q \longrightarrow \overline{G} \longrightarrow 1.$$

・吊り ・ヨン ・ヨン ・ヨ

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

- if |H| ≤ 2: onto the greatest quotient of exponent 2 of G (Faltings-Serre-Livné)
- if |H| = 3: an element of order 6 in every intermediate quotient Z/2Z × H ≅ Z/6Z;
- if H ≅ S₃: an element of order ≥ 3 in every intermediate quotient Q of the form H × Z/2Z or

$$1 \longrightarrow V_4 \longrightarrow Q \longrightarrow \overline{G} \longrightarrow 1.$$

Then Σ is sufficient.

Suppose $\ell = 2$, and let H denote the common image of $\overline{\rho}_i$ in $\operatorname{GL}_2(\mathbb{F}_2) \cong S_3$. Let Σ be a subset of G_K which surjects onto \overline{G} , and in addition,

- if |H| ≤ 2: onto the greatest quotient of exponent 2 of G (Faltings-Serre-Livné)
- if |H| = 3: an element of order 6 in every intermediate quotient Z/2Z × H ≅ Z/6Z;
- if H ≅ S₃: an element of order ≥ 3 in every intermediate quotient Q of the form H × Z/2Z or

$$1 \longrightarrow V_4 \longrightarrow Q \longrightarrow \overline{G} \longrightarrow 1.$$

Then Σ is sufficient.