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Equidistribution of exponential sums

Given q = pr a prime power, consider the additive character

ψq : (Fq,+) −→ (C,×), ψq(x) := exp

(
2πi

p
trFq/Fp

(x)

)
.

For α, β ∈ Fq with α 6= 0 and ` a prime number, define

B`(q;α, β) :=
∑
x∈Fq

ψq

(
αx`+1 + βx

)
∈ C.

Weil estimate: |B`(q;α, β)| ≤ `√q provided p > `+ 1.

We want to understand how the normalized exponential sums

b`(q;α, β) :=
B`(q;α, β)

`
√

q
∈ D

are distributed, on average, as q →∞.

Gabriel Chênevert Exp. sums, hypersurfaces with symmetries & Galois repr.



Equidistribution of exponential sums

Given q = pr a prime power, consider the additive character

ψq : (Fq,+) −→ (C,×), ψq(x) := exp

(
2πi

p
trFq/Fp

(x)

)
.

For α, β ∈ Fq with α 6= 0 and ` a prime number, define

B`(q;α, β) :=
∑
x∈Fq

ψq

(
αx`+1 + βx

)
∈ C.

Weil estimate: |B`(q;α, β)| ≤ `√q provided p > `+ 1.

We want to understand how the normalized exponential sums

b`(q;α, β) :=
B`(q;α, β)

`
√

q
∈ D

are distributed, on average, as q →∞.
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Example: Some of the multisets {b3(p;α, β) | α, β ∈ Fp, α 6= 0}.
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Precise meaning:

Let µ`(q) denote the counting probability measure on D associated
to the multiset

{b`(q;α, β) | α, β ∈ Fq, α 6= 0}.

We want to understand the behaviour as q →∞ of µ`(q).

Convention: p →∞ as q →∞.

Theorem (Livné) lim
q→∞

µ2(q) = µST,

where µST = 2
π

√
1− x2dx is the Sato-Tate measure on [−1, 1].
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Gabriel Chênevert Exp. sums, hypersurfaces with symmetries & Galois repr.



Precise meaning:

Let µ`(q) denote the counting probability measure on D associated
to the multiset

{b`(q;α, β) | α, β ∈ Fq, α 6= 0}.

We want to understand the behaviour as q →∞ of µ`(q).

Convention: p →∞ as q →∞.

Theorem (Livné) lim
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Idea (Birch):

Study the distributions µ`(q) through their moments, which can be
related to the number of Fq-rational points on certain algebraic
varieties.

In Livné’s case (` = 2):

Wm :
m∑

i=1

xi =
m∑

i=1

x3
i = 0 in Pm−1.

For general `:

W m,n
` :

m∑
i=1

xi −
n∑

j=1

yi =
m∑

i=1

x`+1
i −

n∑
j=1

y `+1
i = 0 in Pm+n−1.
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Let Mm,n
` (q) denote the (m, n)-th moment of µ`(q), i.e.

Mm,n
` (q) =

∫
D

zmz̄ndµ`(q)

=
1

q(q − 1)

∑
α6=0,β

b`(q;α, β)mb`(q;α, β)
n
.

Lemma

Mm,n
` (q) =

1

`NqN/2

(
|W m,n

` (Fq)| − qN−2 − 1

q − 1

)
, N = m + n.

Lefschetz trace formula: |W m,n
` (Fq)| can be studied via the

action of Frobenius on the étale cohomology groups H•(W m,n
` ).
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The symmetric hypersurfaces W m,n
`

W m,n
` : smooth projective hypersurface over Q
I degree `+ 1

I dimension N − 3

I admits a projective action of Sm × Sn.

Let p > N be a prime which is inert in Q(ζ`), i.e. F×` = 〈p〉.

I W m,n
` has good reduction at p whenever m 6≡ n mod `.

I When m ≡ n mod `, the reduction of W m,n
` at p acquires

ordinary double points (tangent cone is a smooth quadric).

In that case, the blow-up W̃ m,n
` along the singularities is smooth.
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Cohomology of W̃ m,n
` (Schoen):

I primitive cohomology in middle degree (N − 3);

I ”subprimitive cohomology” in next-to-middle degrees coming
from the primitive cohomology of the exceptional fibers
(smooth quadrics).

Theorem
If q = pr with p inert in Q(ζ`),

Mm,n
` (q) = ± 1

`N
dim HN−4

sub (W̃ m,n
` ) + O

(
1
√

q

)
.

Remark: The subprimitive cohomology vanishes unless

n ≡ m mod ` and n ≡ m mod 2.
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Formula for the primitive character:

In the smooth case, the character χpr of the action of Sm × Sn on
HN−3

pr (W m,n
` ) can be computed using the Lefschetz fixed point

formula.

For σ ∈ SN , d ≥ 1, let md(σ) denote the number of cycles in the
cycle decomposition of σ whose length is divisible by d .

Theorem
Suppose m 6≡ n mod `. For σ ∈ Sm × Sn ↪→ SN , we have

χpr(σ) = (−1)N+1 (1− `)m1(σ)−1 − (1− `)m`(σ)+1

`
.

Example: H4
pr(W7) ∼= 2 · sg ⊕ θ6 ⊕ θ14, where θ6 and θ14 are

irreducible representations of S7 of degree 6 and 14, respectively.
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` ) can be computed using the Lefschetz fixed point

formula.

For σ ∈ SN , d ≥ 1, let md(σ) denote the number of cycles in the
cycle decomposition of σ whose length is divisible by d .

Theorem
Suppose m 6≡ n mod `. For σ ∈ Sm × Sn ↪→ SN , we have

χpr(σ) = (−1)N+1 (1− `)m1(σ)−1 − (1− `)m`(σ)+1

`
.

Example: H4
pr(W7) ∼= 2 · sg ⊕ θ6 ⊕ θ14, where θ6 and θ14 are

irreducible representations of S7 of degree 6 and 14, respectively.
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Modularity and the Faltings-Serre method

Let ρ be the 2-dimensional representation of GQ = Gal(Q/Q) on

H4
pr(W 7

2 )sg(−1).

(Actually: compatible system of `-adic Galois representations.)

I unramified outside {3, 5, 7};
I det ρ = ε35 ⊗ χcycl, ε35: quadratic character of conductor 35.

Numerical evidence: We seem to have

tr(Frobp) = ap(f ), for p 6= 3, 5, 7,

f (q) = 1 + q3 − 5q5 + 7q7 + q9 − 13q11 + · · · ∈ S3(35, ε35).

Deligne’s construction: ρ
?∼ ρf (up to semi-simplification.)
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Gabriel Chênevert Exp. sums, hypersurfaces with symmetries & Galois repr.



Modularity and the Faltings-Serre method

Let ρ be the 2-dimensional representation of GQ = Gal(Q/Q) on

H4
pr(W 7

2 )sg(−1).

(Actually: compatible system of `-adic Galois representations.)

I unramified outside {3, 5, 7};

I det ρ = ε35 ⊗ χcycl, ε35: quadratic character of conductor 35.

Numerical evidence: We seem to have

tr(Frobp) = ap(f ), for p 6= 3, 5, 7,

f (q) = 1 + q3 − 5q5 + 7q7 + q9 − 13q11 + · · · ∈ S3(35, ε35).

Deligne’s construction: ρ
?∼ ρf (up to semi-simplification.)
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Let K be a number field, S a finite set of primes of K , and

ρ1, ρ2 : GK −→ GL2(Z`)

two continuous representations unramified outside S such that

ρ1 ≡ ρ2 mod `.

Definition
A subset Σ ⊆ GK is sufficient if

tr ρ1(σ) = tr ρ2(σ)
det ρ1(σ) = det ρ2(σ)

}
for all σ ∈ Σ =⇒ ρ1 ∼ ρ2.

Faltings-Serre method: There exists a finite sufficient set Σ
depending only on S , ` and ρi .
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Gabriel Chênevert Exp. sums, hypersurfaces with symmetries & Galois repr.



Theorem
Suppose ` = 2, and let H denote the common image of ρi in
GL2(F2) ∼= S3.

Let Σ be a subset of GK which surjects onto G ,
and in addition,

I if |H| ≤ 2: onto the greatest quotient of exponent 2 of G
(Faltings-Serre-Livné)

I if |H| = 3: an element of order 6 in every intermediate
quotient Z/2Z× H ∼= Z/6Z;

I if H ∼= S3: an element of order ≥ 3 in every intermediate
quotient Q of the form H × Z/2Z or

1 −→ V4 −→ Q −→ G −→ 1.

Then Σ is sufficient.
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I if |H| = 3: an element of order 6 in every intermediate
quotient Z/2Z× H ∼= Z/6Z;

I if H ∼= S3: an element of order ≥ 3 in every intermediate
quotient Q of the form H × Z/2Z or

1 −→ V4 −→ Q −→ G −→ 1.

Then Σ is sufficient.
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