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Overview

Implementation and deployment of post-quantum cryptography

ML-based post-quantum primitives

The arithmetic of cyclic polynomials
* Comparision with classical primitives

* Concluding remarks
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NIST : PQ primitives

August 2024

® ML-KEM (CRYSTALS-Kyber) FIPS 203
® ML-DSA (CRYSTALS-Dilithium) FIPS 204
® S| H-DSA (SPHINCS+) FIPS 205

® Drafts for the future standards were available since 2023. —
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Pedagogical
implementation

Impetus

Enough polynomials and linear algebra to implement Kyber

(F. Valsorda, blog post 7/11/2023)

Initial goal

® Provide feedback on drafts

® Compare with standard implementations

® Assess performances and « cost of quantum-resistance »
* Development effort
* Scaling of infrastructures

* Migration to new primitives

Chénevert 4/17



Learning with errors

Asymetrical problem

Given a vector X and matrix A , it's easy to compute

y = A x (matrix multiplication)

Given the result ¥ and matrix A | itis still relatively easy

to recover X ‘Gaussian elimination) ; y @
However, if noise is added v = A X + € /

then it becomes to solve the noisy system of linear equations

y ~ Ax
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High-level description
Public-key encryption

Private key : a secret vector, X

Public key : a matrix A and vector ¥ such that

y~ Ax

To encrypt a message 170 :
compute ¢ =M + W'y
where Wis a randomly chosen (row) vector

and provide V =~ 11 A aswell.

To decrypt:compute U -y ~ u(AX) = (UA)X ~ VX

to remove it from C and take out extra noise.
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ML-KEM and ML-DSA

ML-KEM : Applies the Fujisaki-Okamoto transform to a
simple public-key encryption (PKE) scheme as above.

Alice Bob
KeyGen
[ decapsulation key ] [ encapsulation key ML = module lattice
Noise is added as low-order bits
of coefficients

Decaps Encaps
" | Instead of integral linear

l : l | combinations, components are |
. taken in some polynomial ring |

Alice’s copy of the Bob's copy of the
shared secret key : | shared secret key
S ’ => MLWE problem
K K e P —

ML-DSA : applies a version of the Fiat-Shamir transform
to the asymetrical problem in order to obtain a Schnorr-like

signature scheme.

Chénevert 7/17






Cyclic polynomials
Given a ring R, of coefficients, consider polynomial expressions
f(X) = fo+ X+ foX? + -

with coefficients ir J[{ and for which we convene XN =1

for some integer power [V .

Example: N =7

: N ;
Elements of the ring R[X]/(X ].) can be viewed as f(X) — 142X + 3X2 4+ 4X4 + 5X6

vectors with /V components arranged in a circle where

- addition is permormed component-wise 5 - )
- multiplication by X is a circular permutation

0 3
- multiplication in general corresponds to « circular convolution ». a o
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Fast convolution

Polynomial multiplication of length- /\ circular polynomials

takes (’)(Nz) operations.

Component-wise multiplication takes only O(N)

And Fourier transforms convert convolutions into regular multiplication!
But discrete Fourier transforms take O(Nz) operations in general...

Unless a Fast Fourier Transform (Cooley-Tukey) algorithm is applied,
which takes only

O(NlogN)

operations, making circular convolution only marginally slower than
regular multiplication.
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| Antiperiodic polynomials

When IN = 2n is even, any circular polynomial can be decomposed
into a periodic and antiperiodic part corresponding to the decomposition

of the Fourier transform into even and odd components.

Example with N =8:

1 3 2
8 2 6 4 2 2
7 3 = 5 4 B K. -2
6 4 4 6 2 2
5 3 2
2 2 0
1 8 0 0 1 8
12 14 = 12 14 + 0 0 ( =2mod 17
3 6 0 0 3 6

13 13 0
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Choice of parameters

ML-KEM and ML-DSA work with rings of antiperiodic polynomials R[X] /(Xn -+ ].)
In order to compute the Fourier transform, a [V -th root of unity C

must be chosen in J% .

Number-Theoretic Transform: R = 7, /qZ with N | (g—1)

ML-DSA : ML-KEM :
e n =256 e n = 256
¢ ¢ =8380417 =2% — 2% +1 e g=23329=28.13+1

e ( = 1753, a 512" root of unity e ( =17, only a 256 root of unity
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Classical primitives

RSA, Diffie-Hellman, DSA, ... : based on modular exponentiation with large integers

security level (bits) public key size (bits)
128 3072
256 15360

EC-based : multiplication on elliptic curves

security level (bits) public key size (bits)
128 256

256 512
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ML-KEM

security level (bits)
128

256

ML-DSA
security level (bits)
128

256

public key size (bits)
13056

25344

public key size (bits)
10496

20736
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ML-based primitives

® These new primitives are considerably harder to understand

® Publication of test vectors and expected values will help

developpers comply with the standard

® Having a pedagogical implementation allowing one to easily play
with small (insecure!) values will help explain and teach how

these primitives work
® Working (?) C++ implementation:

® https://github.com/chenevert/ML-KEM
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Thank you'!

 Email: gabriel.chenevert@junia.com

* Webpage: https://junia.ovh/gch
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