Implementation and deployment of postquantum cryptography

Gabriel Chênevert

Computer Science & Mathematics department JUNIA Engineering School Catholic University of Lille, France

Overview

Implementation and deployment of post-quantum cryptography

- ML-based post-quantum primitives
- The arithmetic of cyclic polynomials
- Comparision with classical primitives
- Concluding remarks

ML-based post-quantum primitives

Chênevert 2/17

NIST : PQ primitives

August 2024

- ML-KEM (CRYSTALS-Kyber) FIPS 203
- ML-DSA (CRYSTALS-Dilithium) FIPS 204
- SLH-DSA (SPHINCS+) FIPS 205

• Drafts for the future standards were available since 2023.

Pedagogical implementation

Impetus

Enough polynomials and linear algebra to implement Kyber

(F. Valsorda, blog post 7/11/2023)

Initial goal

- Provide feedback on drafts
- Compare with standard implementations
- Assess performances and « cost of quantum-resistance »
 - Development effort
 - Scaling of infrastructures
 - Migration to new primitives

Learning with errors

Asymetrical problem

Given a vector ${f x}$ and matrix ${f A}$, it's easy to compute

 $\mathbf{y} = \mathbf{A} \, \mathbf{x}$ (matrix multiplication)

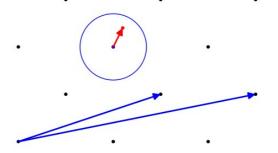
Given the result ${f y}$ and matrix ${f A}$, it is still relatively easy

to recover **X** Gaussian elimination)

However, if noise is added $\mathbf{y} = \mathbf{A} \, \mathbf{x} + \mathbf{e}$

then it becomes to solve the noisy system of linear equations

 $\mathbf{y}\approx\mathbf{A}\,\mathbf{x}$



High-level description

Public-key encryption

Private key : a secret vector X

Public key : a matrix f A and vector f y such that

 $\mathbf{y} pprox \mathbf{A} \mathbf{x}$

To **encrypt** a message m :

compute $c = m + \mathbf{u} \cdot \mathbf{y}$

where **u** is a randomly chosen (row) vector

and provide $\, {f v} pprox {f u} \, {f A} \,$ as well.

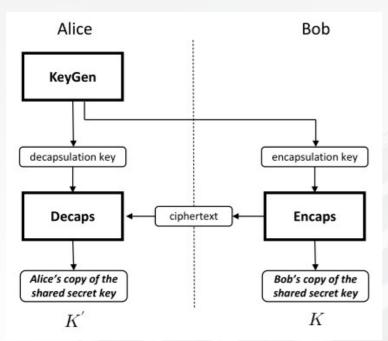
To decrypt : compute $\mathbf{u} \cdot \mathbf{y} pprox \mathbf{u} \left(\mathbf{A} \, \mathbf{x}
ight) = \left(\mathbf{u} \, \mathbf{A}
ight) \mathbf{x} pprox \mathbf{v} \cdot \mathbf{x}$

to remove it from *C* and take out extra noise.

Chênevert 6/17

ML-KEM and ML-DSA

ML-KEM : Applies the Fujisaki-Okamoto transform to a simple public-key encryption (PKE) scheme as above.



ML-DSA : applies a version of the Fiat-Shamir transform to the asymetrical problem in order to obtain a Schnorr-like signature scheme. ML = module lattice

Noise is added as low-order bits of coefficients

Instead of integral linear combinations, components are taken in some polynomial ring

=> MLWE problem

Chênevert 7/17

The arithmetic of cyclic polynomials

Chênevert 8/17

Cyclic polynomials

Given a ring R of coefficients, consider polynomial expressions

 $f(X) = f_0 + f_1 X + f_2 X^2 + \cdots$

with coefficients if R and for which we convene $\;X^N=1$ for some integer power N .

Elements of the ring
$$R[X]/(X^N-1)$$
 can be viewed as

vectors with $\,N$ components arranged in a circle where

- addition is permormed component-wise
- multiplication by $oldsymbol{X}$ is a circular permutation

- multiplication in general corresponds to « circular convolution ».

Example : N = 7

 $f(X) = 1 + 2X + 3X^2 + 4X^4 + 5X^6$

Fast convolution

Polynomial multiplication of length- N circular polynomials

takes $\mathcal{O}(N^2)$ operations.

Component-wise multiplication takes only $\, \mathcal{O}(N) \,$...

And Fourier transforms convert convolutions into regular multiplication!

But discrete Fourier transforms take $\,\mathcal{O}(N^2)$ operations in general...

Unless a *Fast Fourier Transform* (Cooley-Tukey) algorithm is applied, which takes only

$\mathcal{O}(N \log N)$

operations, making circular convolution only marginally slower than regular multiplication.

Antiperiodic polynomials

When N = 2n is even, any circular polynomial can be decomposed into a *periodic* and *antiperiodic* part corresponding to the decomposition of the Fourier transform into *even* and *odd* components.

Example with N=8 :

8	1	2		6	3	4		2	-2	-2	
7		3	=	5		5	+	2		-2	
6	5	4		4	3	6		2	2	-2	
 1	2	8		0	2	0		1	0	8	
12		14	=	12		14	+	0		0	
3	13	6		0	13	0		3	0	6	

 $\zeta=2 \operatorname{mod} 17$

Choice of parameters

ML-KEM and ML-DSA work with rings of antiperiodic polynomials $R[X]/(X^n+1)$

In order to compute the Fourier transform, a $\,N$ -th root of unity $\,\zeta\,$

must be chosen in R .

Number-Theoretic Transform : $R=\mathbb{Z}/q\mathbb{Z}$ with $N\mid (q-1)$

ML-DSA :

- n = 256
- $q = 8380417 = 2^{23} 2^{13} + 1$
- $\zeta = 1753$, a 512^{th} root of unity

ML-KEM :

•
$$n = 256$$

•
$$q = 3329 = 2^8 \cdot 13 + 1$$

•
$$\zeta=17$$
, only a $256^{
m th}$ root of unity

Chênevert 12/17

Comparision with classical primitives

Classical primitives

RSA, Diffie-Hellman, DSA, ... : based on **modular exponentiation** with large integers

security level (bits)	public key size (bits)
128	3072
256	15360

EC-based : multiplication on elliptic curves

security level (bits)	public key size (bits)
128	256
256	512
256	512

ML-based primitives

ML-KEM

security level (bits)	public key size (bits)
128	13056
256	25344
ML-DSA	
security level (bits)	public key size (bits)
security level (bits) 128	public key size (bits) 10496

Chênevert 15/17

Concluding remarks

Chênevert 16/17

ML-based primitives

- These new primitives are considerably harder to understand
- Publication of test vectors and expected values will help developpers comply with the standard
- Having a pedagogical implementation allowing one to easily play with small (insecure!) values will help explain and teach how these primitives work
- Working (?) C++ implementation:
- https://github.com/chenevert/ML-KEM

Partners

FERTINET®

Scientific-Practical Conference: "Telecommunication and Security"

The conference is funded within the conference grants competition CG-24-220 of the National Science Foundation of Georgia.

Thank you !

- **Email**: gabriel.chenevert@junia.com
- Webpage: https://junia.ovh/gch
- Linkedin: yes! find me