
IMPLEMENTATION AND DEPLOYMENT OF POST-QUANTUM
CRYPTOGRAPHY

Gabriel Chênevert1
1 ICL, Junia, Université Catholique de Lille, LITL, F-59000 Lille, France.

ABSTRACT: This short expository note aims to share some of the insight gained by implementing ”from
scratch”, in C++, the ML-KEM and ML-DSA quantum resistant cryptographic primitives. Proper under-
standing of the inner workings of these recently standardized algorithms allows one to produce test vectors
to verify compliance of any new implementation, as well as provide small (unsafe) parameter values that
can be used for pedagogical purposes.

KEYWORDS: post-quantum cryptography, module learning with errors, number-theoretic Fourier trans-
form, ML-KEM, ML-DSA

1. ML-BASED POST-QUANTUM PRIMITIVES

In 2024, the US National Institute of Standards and Technology (NIST) published, after a 7-year-long inter-
national selection process, standards for three quantum-resistant algorithms: ML-KEM [2] (formerly known
as CRISTALS-Kyber), ML-DSA [3] (CRISTALS-Dilithium) and SLH-DSA [4] (SPHINCS+). The first two
of these, based on the module-learning with errors (M-LWE) problem [1], share many conceptual ideas and
certain practical considerations. A blog post aimed at computer engineers [6] prompted this author, aided
by a team of masters-level students, to come up with their own implementations of the then-drafts for the
would-be standards in order to be able to provide feedback and compare them to reference implementations.
This endeavour fits into a larger goal of being able to assess both the performance and total cost of deploy-
ing quantum-resistant primitives, in terms of development effort, scaling of infrastructures, and the actual
migration to new primitives.

The basic learning with errors (LWE) problem [5] is a problem in linear algebra that can be used as a
basis for cryptographical primitives. Given a vector x and matrix A, it is easy to compute, via matrix
multiplication, y = Ax. The inverse process, recovering x from y knowing A, it just solving a compatible
system of linear equations and can be readily performed using Gaussian elimination. However, if noise is
added:

y = Ax+ e,

where e is ”small” in some suitable sense, then it becomes considerably more difficult to solve the noisy
system of linear equations

y ≈ Ax.

This asymmetrical problem can be used as the basic for a public-key encryption primitive as follows.

Private key: a secret (column) vector x.

Public key: a matrix A along with a vector y such that y ≈ Ax.



Encryption of a message m under public key (A,y): choose a random (row) vector u and compute

c = m+u ·y as well as v ≈ uA.

Decryption of (c,v) using private key x: compute

u ·y ≈ u(Ax) = (uA)x ≈ v ·x,

substract it from c, and remove extra noise to recover m.

ML-KEM is a key establishment mechanism that applies the Fujisaki-Okamoto transform to a simple public-
key encryption (PKE) scheme as above, while ML-DSA applies a version of the Fiat-Shamir transform to
the asymmetrical problem in order to obtain a Schnorr-like signature scheme. Both use the ”module” flavor
of the LWE problem, in which noise is added as low-order bits of coefficients, and components are taken in
the polynomial ring that is described in the next section.

2. THE ARITHMETIC OF CYCLIC POLYNOMIALS

Given a ring R of coefficients, consider polynomial expressions

f (X) = f0 + f1 X + f2 X2 + · · ·

with coefficients in R and for which we convene that XN = 1 for some integer power N > 1. Just like for
modular arithmetic, this allows to work with polynomials of a bounded size even when multiplications are
performed.

Elements in the ring R[X ]/(XN − 1) thus constructed can be viewed as vectors in RN with components
arranged in a circle, where :

• addition is performed component-wise;

• multiplication by X is a circular permutation (rotation by 1
N

th of a turn);

• multiplication in general corresponds to ”circular convolution”:(
∑

i
fi X i

)
·
(

∑
j

g j X j
)
= ∑

k
hk Xk with hk = ∑

i+ j≡k
fi g j,

the sum being taken of pairs of indices (i, j) such that i+ j ≡ k mod N.

For example, we may compute in Z[X ]/(X7 −1) the product h(X) of

f (X) = 1+2X +3X2 +4X4 +5X6 and g(X) =−1+X2 +3X3 +X5 :

1
2

3

04

0

5

×

−1
0

1

30

1

0

=

14
3

17

510

10

1



that is,
h(X) = 14+3X +17X2 +5X3 +10X4 +10X5 +X6.

The point is that these multiplications can be computed efficiently. A straightforward implementation of the
above definition would yield a multiplication algorithm taking O(N2) operations, thus considerably slower,
when N is large, than pointwise multiplication – which takes only O(N) operations. However, when N is
highly composite (e.g., a power of 2), applying a fast Fourier transform (Cooley-Tukey algorithm) to cyclic
vectors allows to compute convolutions as pointwise multiplication; the global complexity is dominated by
that of the FFT algorithm, O(N logN), making circular convolution only marginally slower than pointwise
multiplication.

In order to compute the Fourier transform of a cyclic polynomial f (X) ∈ R[X ]/(XN − 1), a primitive Nth

root of unity ζ must be chosen in R; the Fourier transform of f can then be thought of as the cyclic vector
(in RN) obtained by evaluating f at the powers of ζ :

f (1)

f (ζ )

f (ζ 2)

f (ζ 3)

. . .

f (ζ N−1)

Moreover, when N = 2n is even, any cyclic polynomial can be decomposed in to a periodic and antiperiodic
part corresponding to the decomposition of the Fourier transforms into even and odd components, obtained
by evaluation of the polynomial at even and odd powers of ζ , respectively. For example, with N = 8, we
have

1
2

3

4
5

6

7

8

=

3
4

5

6
3

4

5

6

+

−2
−2

−2

−2
2

2

2

2

that correspond, taking Fourier transforms with respect to ζ = 2mod17, to

2
8

14

6
13

3

12

1

=

2
0

14

0
13

0

12

0

+

0
8

0

6
0

3

0

1

This decomposition can be thought of algebraically as the factorization of R[X ]/(X2n−1) into R[X ]/(Xn−1)
and R[X ]/(Xn +1) given by the Chinese Remainder Theorem. Both ML-based standards use the latter ring
of antiperiodic (or negacyclic) polynomials R[X ]/(Xn + 1) with R = Z/qZ a ring of modular integers. At
their core, these algorithms thus specify a triple (q,n,ζ ) of constants that are used throughout, where



• q is a prime number used as modulus for the integral coefficients of the polynomials;

• n is the size of the negacyclic polynomials used (typically a power of 2 in order to have access fast
multiplication through FFT);

• ζ an ℓth root of unity in Z/qZ (which requires that ℓ divides q−1 in order to exist).

Algorithm n q ζ ℓ

ML-DSA 256 8380417 = 223 −213 +1 1753 512
ML-KEM 256 3329 = 28 ·13+1 17 256

Table 1: Algebraic parameters for ML-KEM and ML-DSA

Table 1 references the constants used by the ML standards, chosen for the balance they bring between the
security level of the primitives and the efficiency of computations involved. We may remark that, in the case
of ML-KEM, ℓ = n and not 2n, which complicates matters a bit because a non-split version of the Fourier
transform needs to be used, grouping together the factors

(X −
√

ζ
i
)(X +

√
ζ

i
) = X2 −ζ

i

in the factorization of X2n −1.

3. COMPARISION WITH CLASSICAL PRIMITIVES

The main asymmetrical cryptographic primitives in use today for signature and key establishment, either
based the difficulty of factorization or the discrete logarithm problem (DLP) over the modular integers and
elliptic curves, would be vulnerable to an adversary having access to a large enough fault-tolerant quantum
computer able to run Shor’s algorithm. The main advantage of ML-KEM and ML-DSA over these is that
they are oblivious to such attacks; however, there is a price to pay, in terms of both spatial and temporal
performances, to achieve this quantum resistance.

For instance, Table 2 references the sizes of the public keys needed in each case to achieve a given level of
security.

4. CONCLUDING REMARKS

The main takeaway from this experiment is that both ML-KEM and ML-DSA, as described by the standards,
are considerably more subtle to grasp for the average working software developper than modular integer-
based classical algorithms (which are relatively well understood by the community) and even elliptic curve-
based ones (which still carry an aura of mystery despite being around for almost as long and having seen
widespread usage for the last 25 years). In our opinion, this is due in no small part to the fact that the

security level elliptic curve-based integer-based ML-DSA ML-KEM
128 256 3072 10496 13056
256 512 15360 20736 25344

Table 2: Size (in bits) of the public keys for a given security level



n (non-split) n (split) q ζ ℓ

2 4 5 2 4
4 8 17 2 8
8 16 17 3 16
16 32 97 3 32

Table 3: Toy parameters that can be used for M-LWE

number-theoretic Fourier transform (NTT) is not used merely as an implementation optimization, but rather
embroidered directly into the standards, rendering them somewhat more cumbersome to get a hold on.

Ready availability of test vectors since the publication of the final versions of the standards helps greatly to
assess whether an implementation is functionally compliant or not. We suggest that, for pedagogical pur-
poses, some implementations may support as ”hazardous material” some smaller (unsafe) parameter choices
that would allow people to get a better understanding of the inner workings of these new algorithms, such as
those in Table 3. In particular, when speed of execution is not an issue, a modified version of the algorithm
might skip altogether the NTT parts and work instead with the slower convolution-style multiplication (for
the same functional results).

5. ACKNOWLEDGEMENTS

Many thanks to friend and colleague Pierre Dubois for his precious help with the TikZ figures; as well
as to JUNIA ISEN Cybersecurity students Rémi Protin, Aurélien Degain, Hamza Berbache, Enzo Barea
Fernandez, Clément Gorse and Benoı̂t Wattinne for their work on our C++ ML-KEM implementation.

References

[1] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. ”(Leveled) Fully Homomorphic Encryption without
Bootstrapping.” ITCS, ACM (2012): 309–325.

[2] National Institute of Standards and Technology. Module-Lattice-Based Key Encapsulation Mecha-
nism Standard, (Department of Commerce, Washington, D.C.), Federal Information Processing Stan-
dards Publication (FIPS) NIST FIPS 203 (2024). https://doi.org/10.6028/NIST.FIPS.203.

[3] National Institute of Standards and Technology. Module-Lattice-Based Digital Signature Standard,
(Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publica-
tion (FIPS) NIST FIPS 204 (2024). https://doi.org/10.6028/NIST.FIPS.204.

[4] National Institute of Standards and Technology. Stateless Hash-Based Digital Signature Standard,
(Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publica-
tion (FIPS) NIST FIPS 205 (2024). https: //doi.org/10.6028/NIST.FIPS.205.

[5] O. Regev. ”On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.” STOC,
ACM (2005): 84–93.

[6] F. Valsorda. ”Enough Polynomials and Linear Algebra to Implement Kyber.” Cryptography Dis-
patches (2023). https://words.filippo.io/dispatches/kyber-math/.

https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https: //doi.org/10.6028/NIST.FIPS.205
https://words.filippo.io/dispatches/kyber-math/

