
Eureka! Universiteit Leiden10

Eureka!

This result is at first glance quite at odds with geometrical

intuition. Indeed, it seemingly allows one to create a ball out 

of thin air, using only another ball as a catalyst! But this is

certainly not the only mathematical result that challenges

common sense; let us first describe a simpler version of a

similar phenomenon.

The Hilbert Hotel

Imagine a hotel consisting of a single (very) long corridor

comprising infinitely many rooms, labeled by the natural

integers. This hotel, named after David Hilbert (1862-1943), 

has the pleasant property of being able to accommodate new

guests even when it is full! Indeed, suppose that all the rooms

are occupied and that a new guest shows up at the front desk. 

The manager could ask all current occupants to simultane-

ously move to the next room: if the person in the first room

moves to the second one, the person in the second moves to 

the third, and in general the occupant of room п moves to 

room п + 1, then the first room becomes available for the new

guest without requiring any of the previous guests to leave the

hotel (see figure 2). This feat is of course impossible to accom-

plish in a hotel with only finitely many rooms (such as those

usually encountered in most contemporary cities), illustrating 

of the fact that an infinite set, unlike a finite one, can very 

well be in bijection with a proper subset of itself.

It is even possible to allow infinitely many new guests in the

hotel by asking the occupant of room п to move to room 2п, 

making all the odd-numbered rooms available. This means

that the Hilbert Hotel can be “doubled”: suppose that the two 

children of the manager each inherit half of the hotel at the

manager’s death; if the first one takes all the odd-numbered

rooms and the second one all the even-numbered ones, they

can both run their own Hilbert Hotel. Another illustration of 

this idea in popular culture is the joke of the fool, having been 

granted three wishes, who asks for “two other bottomless bot-

tles of beer”!

Here is a geometric version of the same idea. Let C be a circle

in the plane and suppose we want to fit one more point P in it.

Since there are already infinitely many points on C, we only 

need to rearrange them in order to make room for one more. 

Figuur 1: Illustration of the Banach-Tarski paradox.

Figuur 2: Plenty of room at the Hilbert Hotel.

The Banach-Tarski  Paradox
The Polish mathematicians Stefan Banach and Alfred 

Tarski published in 1924 [1] a proof of the following 

rather surprising fact:

A solid sphere can be cut into a finite number of pieces 

and reassembled to form two identical copies of itself.
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Equidecomposability

The statement made by Banach and Tarski actually concerns

the group E+(3) of rigid motions (also called direct isome-

tries) of 3-space. Recall that these are the bijections σ : ℝ3→ℝ3

that preserve distance and orientation; any such rigid motion 

can be obtained as a rotation followed by a translation (or vice 

versa). In fact, the rigid motions that leave the origin fixed

are precisely the rotations around an axis going through the

origin; they form a subgroup, denoted SO(3), of E+(3). Two 

subsets of ℝ3 are called congruent if one can be obtained by 

applying a suitable rigid motion to the other; for example, all

cubes with the same volume are congruent, but none of them

is congruent to any sphere.

We can now make precise the concept of “cutting and rear-

ranging” alluded to in the introduction. We say that two sets

A and B in ℝ3 are equidecomposable if they can be written as

finite disjoint unions of pair wise congruent subsets. In sym-

bols, A ~ B means that

and for every 1 ≤ i ≤ п there is a rigid motion σ
i
∈ E+(3) such 

that B
i
 =σ

i
(A

i
). This defines an equivalence relation weaker

than congruence, in the sense that more pairs of subsets are

now considered to be “the same” since we are allowed to apply 

a different rigid motion to each piece. For example, the Hil-

bert Hotel trick above shows that a circle in the plane is equi-

decomposable with a circle together with a point: if D stands 

for the set of iterates of Q, apply ρ to D in order to make room

for P, then put P in place by applying to it the translation 

If ρ denotes the rotation of √2 degrees around the center of C, 

then the successive images

of any point Q ∈ C under the iterates of ρ are all distinct. 

These points behave just like the rooms in the Hilbert Hotel: 

applying ρ make them “move to the next spot”, leaving the

location previously occupied by the point Q available for our

extra point P. The only thing really needed in order for this

trick to work is

That ρ have infinite order; hence any choice of an irrational

rotation angle (in degrees) would work. Note that the set of

iterates of Q is geometrically pretty wild: it is relatively small

(i.e., only countably infinite) but nonetheless dense in C – just

like the rational numbers on the real line.

Eureka!

arski  Paradox

Figuur 3: Making room for one more point on a circle
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that sends it to Q. On the complement C \ D of D we do no-

thing; this can be thought of as applying the trivial transfor-

mation (denoted 1 in the diagram below).

A set is called paradoxical if it equidecomposable with two 

disjoint copies of itself. Using this terminology, the theorem

of Banach and Tarski can thus be stated as: a solid sphere is a

paradoxical subset of ℝ3.

Note that this precise formulation removes some of the aura

of mystery around the “paradox”. Certain variants of it are

notably much easier to accept, for example if in addition to 

rigid motions one accepts other kinds of continuous defor-

mations in the group of admissible transformations (we can 

easily imagine cutting a ball in two and inflating each piece to 

a ball of the original volume). We also have complete free-

dom to choose the pieces of the decompositions as we want. 

The bottom line here is that we should not be too troubled by 

certain subsets of R3 not behaving according to our geometric 

intuition, because an arbitrary subset of R3 does not usu-

ally look like something we might reasonably want to call a

geometric object. In particular, the apparent paradox disap-

pears once we realize there is a priori no reason why the usual

notion of volume should apply to all subsets of ℝ3 (and this

theorem actually shows quite clearly that it does not).

Sketch of the proof

The crucial point that allows to construct a paradoxical

decomposition of the ball is the fact that SO(3) contains

two rotations α and β that are completely independent. For

example, one could take α and β to be two rotations of angle

arccos( 1
3
) around two orthogonal axes[2]. In fact, just like in 

the 2D case where most rotations have infinite order, most

pairs of rotations in SO(3) are independent, so just picking α

and β randomly should do.

“Independent” here means that all the rotations obtained by 

performing various sequences of α, β and their inverses are

distinct (if we convene in such a sequence never to undo a ro-

tation immediately after performing it). In such a case we say 

that the subgroup F of SO(3) consisting of all these rotations

is freely generated by α and β (see figure 4).

The group F exhibits a certain self-similarity that we can des-

cribe as follows. Write F as a disjoint union of five subsets

where the subscript denotes the leftmost generator appearing 

in an element of F (for example α −3 β 2α ∈ F
α 

−1 , while

β 4α −1 ∈ F
β
). If a sequence starts with α −1, then according to 

our convention the second generator can be anything except 

α; adding an α on the left of such a sequence removes the α −1

and the second generator become the first in the process. In 

symbols,

and the same holds with α replaced by β. We thus obtain an 

equidecomposition

of F \ {1} with 2 copies of F. Using the Hilbert Hotel trick, one

easily sees that F \ {1} ~ F, so we conclude that F ~ F ∪ F, i.e.,

that F, as a group, is paradoxical.

Let now S be a sphere centered at the origin in R3 and D the 

set of points in S that are fixed by some nontrivial rotation 

in F. Two points in S \ D can be considered equivalent if we

Figuur 4: A picture of the free group F generated by α and β. The 

vertices represent the elements of F, expressed as sequences made out of 

the symbols α, α -1, β and β -1. Going up a blue edge up corresponds to

adding an α to the right of a sequence, and going down to removing it (or 

equivalently, adding an α -1). Similarly, following a red edge right or left 

has the effect of adding a generator β or β -1, respectively.
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can obtain one from the other by applying an element of F ; 

this element is then unique since we made sure to take out the

fixed points D. This allows to decompose S \ D in infinitely 

many disjoint orbits for the action of F. The choice of a base

point in an orbit identifies it with F ; doing this for all orbits

simultaneously, we obtain a paradoxical decomposition of

S\ D induced by that of F.

From this, it is relatively easy to deduce that S itself is para-

doxical (we only took out a countable set of

points after all). We may then get a paradoxical decompo-

sition of a solid sphere B by considering it as the union of 

infinitely many concentric copies of S (like the layers of an

onion, the origin has to be treated separately with one last 

application of the Hilbert Hotel trick). We thus obtain a proof

of the fact that B is paradoxical.

Conclusion

Here we only sketched some the ideas behind the Banach-

Tarski theorem, following loosely the modern account given 

in [2]. There has been over the years various refinements and

variants of it – we now know that the smallest possible num-

ber of pieces in a paradoxical decomposition of the ball is five, 

and that the pieces can even be moved continuously in space

without running into each other! Much attention has also 

been devoted to the crucial role played above by the axiom of

choice which was used to simultaneously pick a base point in 

every orbit; the interested reader may wish to consult [3] for a

survey of these developments.
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Figuur 5: Stefan Banach (1892–1945) and Alfred Tarski (1901–1983)
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