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Since the 90s, we know that all elliptic curves defined over Q are modular, and the (almost proven)
Serre conjectures imply that the same is true more generally for every odd 2-dimensional Galois rep-
resentation coming from the cohomology of varieties defined over Q. However, even if this gives in
theory a finite method to determine the relevant modular form from defining equations for the variety,
in practice it is rarely feasible in reasonable time. So this raises two main issues: 1) how to specify,
and “compute”, Galois representations arising in the cohomology of arithmetic varieties; and 2) how to
determine the automorphic (modular) forms corresponding (conjecturally in the general case) to these
representations. Some results and leads are discussed here, illustrated on an example related to the
distribution of certain exponential sums.

General setting

Let X be an arithmetic variety defined over a number field K; here we assume X is smooth and
proper for simplicity. For any constructible Eλ-sheaf Fλ on X, where Eλ is a finite extension of Q`,
the étale cohomology groups

H•(X,Fλ) :=
2 dimX⊕
i=0

Hi
ét(XK ,Fλ)

are finite-dimensional graded Eλ-vector spaces on which the absolute Galois group GK acts linearly.
For example, if X is an abelian variety (e.g. an elliptic curve), then

Hi(X,Q`) = ∧iH1(X,Q`) = ∧i V`(X)∨,

where V`(X) = T`(X)⊗Z` Q` is the `-adic Tate module of X, of dimension 2 dimX.
Now let E be another number field and F an E-constructible sheaf on X. For every finite place λ

of E, we denote by Eλ the completion of E with respect to the λ-adic norm. Then Fλ := F ⊗ Eλ is
an Eλ-constructible sheaf, and the trace formula of Grothendieck implies that

H•(X,F) :=
(
H•(X,Fλ)

)
λ

is a compatible system of E-rational λ-adic Galois representations: for every prime p at which X has
good reduction, and for every λ away from p, the λ-adic representation H•(X,Fλ) is unramified at p
and the (graded) characteristic polynomial

det(1− tFrobp | H•(X,Fλ)) ∈ Eλ(t)

of the Frobenius substitution Frobp at p has coefficients in E, and is independent of λ.
This allows one to define the Hasse-Weil zeta function

ζ(X,F ; s) :=
∏

p/∈RamX

det(1−Np−sFrobp | H•(X,F))−1,

which converges for <s > dimX + 1 and encodes the information about the number of points of X
over (most) finite fields.

Modularity

For example, if X is an elliptic curve over Q, then

ζ(X,Q; s) = ζ(s)ζ(s− 1)
∏
p

(1− ap(X)p−s + p1−s)
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where ap(X) is the number of points of X over Fp when it has good reduction. By the celebrated
Modularity Theorem [2, 19], the coefficients ap(X) are the Hecke eigenvalues ap(f) of a rational modular
form f of weight 2 and level the conductor NX of X.

This is a purely representation-theoretic statement, since Deligne [4] described how to attach to
every cusp eigenform f ∈ Snew

k (N, ε), k ≥ 2, a 2-dimensional compatible system ρf of Q(f)-rational
`-adic representations, unramified outside N , satisfying

det ρf = εχk−1 and tr ρf (Frobp) = ap(f) for p 6 | N,

where χ = (χ`)` is the cyclotomic character. Thus the Modularity Theorem can be rephrased as: the
compatible system of representations H1(X,Q) is isomorphic to ρf for some rational f ∈ Snew

2 (NX , 1).
Assuming the full Serre conjectures (proved at least for odd conductor [11]), the following more

general result holds.

Theorem 1 ([10, 17]). Let ρ be an odd irreducible 2-dimensional subquotient of H•(X,Q) of Hodge-
Tate weights a < b, where X is defined over Q. Then

ρ ' χ−a ⊗ ρf ,

where f is a newform of weight b−a+ 1, character ε = χ2a det ρ, and level dividing N :=
∏
p∈Ram ρNp

with

Np =


28 if p = 2 /∈ Ram (det ρ)
211 if p = 2 ∈ Ram (det ρ)
35 if p = 3
p2 if p > 5.

Thus if ρ is known explicitely (in the sense that for every unramified prime p we know how to
compute tr ρ(Frobp)), and k,N, ε are given by the theorem, we can determine precisely which eigenform
f ∈ Sk(N, ε) corresponds to ρ by computing the traces of ρ for primes up to [14]

k

12
N
∏
p|N

(
1 +

1
p

)
.

The problem with that approach is that often we do not know the precise ramification set Ram ρ of
the representation; in that situation the best we can do is replace Ram ρ with the (possibly bigger) set
RamX of primes of bad reduction for X to get a (possibly much bigger) bound

∏
p∈RamX Np on the

level of the modular form, which can render this algorithm inapplicable in practice.
The best way around this would be able to read more information about the ramification of ρ from

the geometry of X. For instance, if X admits a semistable model, then the Galois representation on
its cohomology is tamely ramified and this allows one to improve the bound in the theorem.

Another approach is to make an educated guess (from numerical evidence) for the modular form f ,
and then proceed to show directly that the compatible system ρ is isomorphic to ρf .

The Faltings-Serre method

Faltings [5] remarked, and Serre [16] turned into a working tool, the fact that the equivalence of two
continuous λ-adic Galois representations is something which can in principle be determined on some
finite extension of the base field (even though the representations themselves need not factor through
a finite quotient).

Let Oλ be the ring of integers in a finite extension of Q` and consider ρ1, ρ2 : G → GLn(Oλ) two
semisimple representations of a group G. Denote by M the image of Oλ[G] in Mn(Oλ) ×Mn(Oλ) by
the linear map induced by ρ1 × ρ2, and δ(G) the image of G in (M/λM)×. We call δ(G) the deviation
group of the pair (ρ1, ρ2).

One can prove that δ(G) is a finite quotient of G (of order no more than N(λ)2n2
), unramified

outside Ram ρ1 ∪ Ram ρ2, and having the property that for any Σ ⊆ G surjecting onto δ(G),

ρ1 ' ρ2 ⇐⇒ tr ρ1|Σ = tr ρ2|Σ.

In special cases, it is possible to turn this into a usable criterion, e.g. Serre’s method of quartic fields
[16] or the following in the case of 2-adic representations with even trace [13].
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Theorem 2. Let K be a number field, Eλ a finite extension of Q2, ρ1, ρ2 : GK → GL2(Eλ) two
semisimple representations with even trace, same determinant, and unramified outside S. Let Σ ⊆ GK
be a set surjecting onto Gal(K(2)

S /K), where K(2)
S is the compositum of all quadratic extensions of K

which are unramified outside S. Then

ρ1 ' ρ2 ⇐⇒ tr ρ1|Σ = tr ρ2|Σ.

In this form, the Faltings-Serre method was used to explicitly prove many instances of modularity
over Q: Schoen’s singular quintic 3-fold [15, 17], Livné’s singular cubic 7-fold [13], and more recently
for a lot of K3 surfaces and rigid Calabi-Yau manifolds [8]. It was also used recently for Hilbert modular
forms [18].

For K = Q, this criterion involves at most 2|S|+1 checks. In my thesis I proved the following result,
which generalizes Serre’s original quartic fields method to the case where the above criterion fails.

Theorem 3. Let K be a number field, ρ1, ρ2 : GK → GL2(Z2) two semisimple representations with
traces of the same parity but not identically even, having the same determinant, and unramified outside
a set S of primes of K. Let L be the Galois extension of K cut out by the kernel of the modulo 2
representations, and Σ ⊆ GK be a set surjecting onto Gal(L′/K) for every Galois extension L′/K
containing L, unramified outside S, and such that, as Gal(L/K)-modules,

Gal(L′/K) ' Z/2Z or V r4 , with r ≤

{
1 if Gal(L/K) ' S3,

5 if Gal(L/K) ' Z/3Z.

Then ρ1 ' ρ2 ⇐⇒ tr ρ1|Σ = tr ρ2|Σ.

Notice that this criterion is strictly more efficient than first establishing the equivalence of ρ1 and ρ2

as representations of GL using the original Faltings-Serre method, and then arguing using Frobenius
reciprocity that they agree as representations of GK , as was done in [18]. The proof uses a delicate
bootstrap argument involving the deviation group.

A modular cubic 4-fold

Consider the variety Wn ⊆ Pn−1 defined by
n∑
i=1

xi =
n∑
i=1

x3
i = 0.

For n > 5, Wn is an irreducible variety of dimension n− 3 admitting an action of Sn by permutation
of the coordinates. This family was studied by Livné in connection with Birch’s conjecture on the
distribution of cubic exponential sums [12]. In particular, it was proven in [13], using the Faltings-
Serre-Livné criterion for even trace representations, that W10 is modular (the only interesting piece of
its cohomology is 2-dimensional).

Using my generalization of the Faltings-Serre-Livné criterion (Theorem 3), I was able to prove the
following.

Theorem 4. The zeta function of the smooth variety W7 of dimension 4 is given by

ζ(W7, s) = ζ(s)ζ(s− 1)ζ(s− 3)ζ(s− 4)ζ(s− 2)15L(ε5, s− 2)6L(f, s− 1)

where f ∈ Snew(35, ε35), and εd denotes the quadratic character of conductor d.

To prove this, the first step is to decompose the cohomology of W7 into isotypical components for
the action of S7. The following fact is needed, which is implicitly present in [6, 7] but stated here in a
more precise and general form.

Theorem 5. Let X be a variety defined over a number field K, G a finite group of automorphims of
X such that the quotient X/G exists, and F a G-equivariant E-constructible sheaf on X, where E is a
finite extension of Q. As a G×GK-module, the cohomology decomposes into G-isotopical components

H•(X,F) =
⊕

φ∈IrrE(G)

H•(X,F)φ ⊗Eφ Wφ
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where the sum ranges over all irreducible representations φ of G over E, Wφ is a vector space on which
G acts via φ, and Eφ = EndE(Wφ). Then each “multiplicity”

H•(X,F)φ = HomG(Wφ, H
•(X,F))

is an E-rational compatible system of λ-adic representations.

To compute this isotypical decomposition, it is sometimes possible to obtain the character of the
action using the Lefschetz fixed point formula. In the case of Sn acting on H•(Wn), I proved the
following.

Theorem 6. Let n > 5 be an odd integer (so that Wn is smooth) and let χpr denote the character of
the symmetric group Sn acting on the primitive cohomology of Wn. For σ ∈ Sn, write md(σ) for the
number cycles of order divisible by d in its disjoint cycles decomposition. Then

χpr(σ) =
(−2)m1(σ)−1 − (−2)m3(σ)+1

3
.

For example, for σ = (123)(456)(78) ∈ S9, we have m1(σ) = 4, m2(σ) = 1, m3(σ) = 2 and
md(σ) = 0 for d ≥ 4, so that χpr(σ) = 0. I got similar formulas involving the class functions md

for other representations of the symmetric groups on families of symmetric hypersurfaces of varying
dimension. A careful analysis of these formulas seems both subtle and interesting from a combinatorical
point of view.

For W7, it turns out that all irreducible representations which appear occur with multiplicity 1, and
the corresponding linear Galois characters are easily computed, except for the alternating representation
which occurs with multiplicity 2 in the primitive cohomology.

Theorem 7. Let ρ denote the representation of GQ on H4
pr(W7,Q)(−1). Then Ram ρ ⊆ {3, 5, 7},

det ρ = ε35χ
2 and

tr ρ(Frobp) =
V7(p)

p3(p− 1)
− 14p− 6

(p
5

)
p

for p 6= 3, 5, 7, where

Vn(p) =
∑

a,b∈Fp
a 6=0

{ ∑
x∈Fp

exp
(

2πi
p

(ax3 + bx)
)}n

.

From the Serre conjecture (unconditionally here because 2 is not ramified), we get that ρ comes
from a newform g ∈ S3(N, ε35) with 35 |N | 355272 = 297675. Thus, to find the exact modular form
would involve computing the traces for primes up to 119070. However, an application of the generalized
Faltings-Serre-Livné criterion requires significatively less computations.

Equidistribution of exponential sums

For any fixed degree k > 1, one can consider the average limit distribution as p → ∞ of the
exponential sums

Bk(a, b; p) :=
p−1∑
x=0

exp
(

2π
p

(axk + bx)
)
, a 6= 0.

In his paper [13], Livné proves an analogue of the Sato-Tate conjecture, first formulated by Birch [1],
in the case k = 3. He achieved this by relating these exponential sums with the number of points
over finite fields, hence the étale cohomology, of the varieties Wn introduced above. For a general k,
the moments of the limit distribution are related to the number of points of the projective varieties
Wm,n
k ⊆ Pm+n−1 defined in the homogeneous coordinates x1, . . . , xm, y1, . . . , yn by

m∑
i=1

xi =
n∑
j=1

yj ,

m∑
i=1

xki =
n∑
j=1

ykj .

The situation becomes considerably more complicated, but using the fact that these varieties admit
Sm × Sn as automorphisms, I was able in many cases to compute the Galois representation supported
by the cohomology groups of these varieties (or their desingularization). This yields asymptotics for
the corresponding moments of the distribution of the sums Bk(a, b; p) along certain families of primes.
However, I am not aware of a simple description of the limit distributions like in the case k = 3.
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